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quantum Fourier transform

discrete Fourier transformation
input: a vector of complex numbers x0, · · · , xN−1, for fixed N;
output: a vector of complex numbers y0, · · · , yN−1, defined by

yk ≡ 1√
N

N−1∑
j=0

xje2πijk/N.

quantum Fourier transformation (QFT)
input: |j⟩;
output:

1√
N

N−1∑
k=0

e2πijk/N|k⟩.
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Equivalently, the action on an arbitrary state may be written

N−1∑
j=0

xj|j⟩ →
N−1∑
k=0

yk|k⟩,

where the amplitudes yk are the discrete Fourier transform of
the amplitudes xj.

Q1: QFT is unitary?
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product representation

For n-qubit quantum system, we have N = 2n, and the basis
|0⟩, |1⟩, · · · , |2n − 1⟩ is the computational basis.

j = j1j2 · · · jn, i.e., j = j12n−1 + j22n−2 + · · ·+ jn20.
0.jljl+1 · · · jm = jl/2 + jl+1/4 + · · ·+ jm/2m−l+1
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efficient circuit

With Rk ≡
[

1 0
0 e2πi/2k

]
, we can derive the circuit for QFT

just as follows.
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complexity

classical Fourier transformation: O(N2);
fast Fourier transform: O(N logN).

O(n2)
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Eg. Explicit circuit for 3-qubit QFT.

Q2: How to obtain this matrix?
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phase estimation

Suppose a unitary operator U has an eigenvector |u⟩ with
eigenvalue e2πiφ, where the value of φ is unknown.

Goal: to estimate φ
black boxes (oracles): preparing the state |u⟩, performing the
controlled-U2j operation, for non-negative integers j.

classical???
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the first stage

The first register contains t qubits initially in the state |0⟩.
[ acurracy & probability]
The second register begins in the state |u⟩, and contains
qubits which can store |u⟩.
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the second and third stage

The second stage: inverse QFT
The third stage: measure the first register in the
computational basis

The schematic of the overall phase estimation is as follows.
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intuition

Suppose φ may be expressed exactly in t bits, as φ = 0.φ1 · · ·φt.
1 The state resulting from the first stage may by rewritten

1
2t/2

(
|0⟩+ e2πi0.φt |1⟩

)
· · ·

(
|0⟩+ e2πi0.φ1φ2···φt |1⟩

)
.

2 The second stage is to apply the inverse QFT (heart),
then the output state is the product state

1
2t/2

2t−1∑
j=0

e2πiφj|j⟩|u⟩ → |φ⟩|u⟩.

3 Thus a measurement in the computational basis gives us φ
exactly.
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performance and requirements

The above intuition based on the fact that φ can be written
exactly in t bits.
What happens when this is not the case?

Let b ∈ [0, 2t − 1], and b/2t = 0.b1 · · · bt is the best t-bit
approximation less than φ. (eg. the first t bits of φ)
The difference δ ≡ φ− b/2t, and 0 ≤ δ ≤ 2−t.
Aim: produce a result which is close to b, thus to estimate
φ accurately with high probability.

t???
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If the result is m, then p(|m − b| > e) ≤ 1
2(e−1) , where e is

an integer satisfying

m
2t −

b
2t <

1
2n −→ e = 2t−n − 1.

Thus to obtain φ accurate to n-bits with succ. prob. at
least 1 − ϵ, we choose

t = n + ⌈log(2 +
1
2ϵ)⌉.

Q3: How to deal with the case of |ψ⟩ =
∑

u cu|u⟩? (Ex. 5.8)
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Quantum phase estimation can be summarized below.
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The fast quantum algorithms for these two problems are
interesting for three reasons.

providing evidence for the idea that “quantum computers
may be inherently more powerful than classical ones”
intrinsic worth to justify interest in any novel algorithm
practical standpoint: to break the RSA public-key
cryptosystem.

These two problems are in fact equivalent to one another.
1 explaining a quantum algorithm for solving the

order-finding problem;
2 explaining how the order-finding problem implies the

ability to factor.
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order finding

Def: For positive integers x and N, and x < N with no
common factors. The order of x modulo N is defined to
be the least positive integer, r, such that xr = 1(modN).

Goal: to determine the order for some specified x and N.
Hardness: No classical algorithm is known to solve it
using polynomial in the O(L) bits, where L ≡ ⌈log(N)⌉.
The quantum algorithm for order-finding is just the phase
estimation applied to the unitary operator

U|y⟩ ≡ |xy modN⟩,

with y ∈ {0, 1}L and 0 ≤ y ≤ N− 1 for the action of mod N.
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reduction to phase estimation

Define states |us⟩, 0 ≤ s ≤ r − 1 as follows, i.e.,

|us⟩ ≡
1√
r

r−1∑
k=0

exp
[−2πisk

r

]
|xkmodN⟩.

Then they are eigenstates of U, since

U|us⟩ =
1√
r

r−1∑
k=0

exp
[−2πisk

r

]
|xk+1modN⟩ = exp

[−2πis
r

]
|us⟩.
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procedure
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factoring

Given a positive composite integer N, what prime numbers
when multiplied together equal it?

reduction of factoring to order-finding
simple example of factoring 15
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reduction
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Eg. factoring 15

1. Choose a random number x = 7.

2. Compute the order r satisfying xr = 1 mod N

2.1 begin with the state |0t⟩|04⟩
2.2 apply H gates to the first register containing t = 11 qubits

(ensuring ϵ ≤ 1/4)

2.3 compute f(k) = xkmodN

2.4 apply the inverse QFT to the first register and measure it
measure the second register, obtaining a random result from
1, 7, 4 or 13.
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2.5 suppose the result is 4 (r2), that means the state (r1) input
to FT† would have been

√
4
2t

[
|2⟩+ |6⟩+ |10⟩+ |14⟩+ · · ·

]
2.6 after applying FT†, we obtain some state

∑
l αl|l⟩, with the

probability distribution below

the
final measurement gives either 0, 512, 1024, or 1536, and
each with probability almost exactly 1/4.

3. suppose we obtain l = 1536, computing the continued
fraction expansion gives 1536/2048 = 1/(1 + (1/3)), so that
3/4 occurs as a convergent in the expansion.

4. r is even, and xr/2 mod N = 4 ̸= −1 mod 15, so
gcd(x2 − 1, 15) = 3 and gcd(x2 + 1, 15) = 5 are both
non-trivial factors.
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general applications of the QFT

period finding
discrete logarithms
hidden subgroup problem

The readers interested in understanding all the details will have
to work much harder, because the presentation in this section is
rather more schematic and conceptual than earlier sections.
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