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input: a vector of complex numbers xy, - - - , zy_1, for fixed N;
output: a vector of complex numbers ¥, - - - , yny_1, defined by
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quantum Fourier transform

discrete Fourier transformation
input: a vector of complex numbers g, - - -

output: a vector of complex numbers vy, - - -
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, IN_1, for fixed N;
, YN—1, defined by

quantum Fourier transformation (QFT)
input: |j);
output:
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Equivalently, the action on an arbitrary state may be written

N—1 N—1
S mli = > k),
=0 k=0

where the amplitudes y; are the discrete Fourier transform of
the amplitudes z;.



Equivalently, the action on an arbitrary state may be written

N—1 N—1
S mli = > k),
=0 k=0

where the amplitudes y; are the discrete Fourier transform of
the amplitudes z;.

Q1: QFT is unitary?



For n-qubit quantum system, we have N = 2", and the basis
|0),]1),---,]2™ — 1) is the computational basis.
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product representation

For n-qubit quantum system, we have N = 2", and the basis
|0), [1),---,|2™ — 1) is the computational basis.
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just as follows.

] , we can derive the circuit for QFT
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classical Fourier transformation: O(N?);
fast Fourier transform: O(Nlog N).

lcp t#HEAL S



classical Fourier transformation: O(N?);
fast Fourier transform: O(Nlog N).
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Eg. Explicit circuit for 3-qubit QFT.
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Eg. Explicit circuit for 3-qubit QFT.
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Q2: How to obtain this matrix?
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phase estimation

Suppose a unitary operator U has an eigenvector |u) with
eigenvalue ™% where the value of ¢ is unknown.

Goal: to estimate ¢
black boxes (oracles): preparing the state |u), performing the
controlled- U?" operation, for non-negative integers ;.

classical???
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@ The first register contains ¢ qubits initially in the state |0).
[ acurracy & probability]

e The second register begins in the state |u), and contains
qubits which can store |u).
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the first stage

o The first register contains ¢ qubits initially in the state |0).
[ acurracy & probability]

@ The second register begins in the state |u), and contains
qubits which can store |u).
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o The second stage: inverse QFT

o The third stage: measure the first register in the
computational basis
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the second and third stage

o The second stage: inverse QFT

o The third stage: measure the first register in the
computational basis

The schematic of the overall phase estimation is as follows.
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intuition

Suppose ¢ may be expressed exactly in ¢ bits, as ¢ = 0.1 - - - 4.
@ The state resulting from the first stage may by rewritten

9t/2 <|0> 2MO%|1>) e (’0> + €2ﬂi0'¢1‘p2"'%]1>).

@ The second stage is to apply the inverse QFT (heart),
then the output state is the product state
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@ Thus a measurement in the computational basis gives us ¢
exactly.
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performance and requirements

The above intuition based on the fact that ¢ can be written
exactly in ¢ bits.
What happens when this is not the case?

e Let b€ [0,28 — 1], and b/2! = 0.by - - - by is the best tbit
approximation less than ¢. (eg. the first ¢ bits of ¢)

@ The difference § = ¢ — b/2!, and 0 < § < 271

@ Aim: produce a result which is close to b, thus to estimate
 accurately with high probability.

lcp t#HEAL S
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performance and requirements

The above intuition based on the fact that ¢ can be written
exactly in ¢ bits.
What happens when this is not the case?

e Let b€ [0,28 — 1], and b/2! = 0.by - - - by is the best tbit
approximation less than ¢. (eg. the first ¢ bits of ¢)

@ The difference § = ¢ — b/2!, and 0 < § < 271

@ Aim: produce a result which is close to b, thus to estimate
 accurately with high probability.
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o If the result is m, then p(jm — b| > e) < 2(e+ where e is
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an integer satisfying
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. Loty c2mik 1wt zm'j(z @—k)
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o If the result is m, then p(|m — b > e) < ﬁ, where e is
an integer satisfying

m b 1 t—

o Thus to obtain ¢ accurate to n-bits with succ. prob. at
least 1 — €, we choose

t = n+ [log(2 + 2%)1.
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o If the result is m, then p(|m — b > e) < ﬁ, where e is
an integer satisfying

m b 1 t—

o Thus to obtain ¢ accurate to n-bits with succ. prob. at
least 1 — €, we choose

t = n+ [log(2 + 2%)1.

Q3: How to deal with the case of |¢) = Z culu)? (Ex. @)‘fﬂ?“ﬂﬂ#‘



Quantum phase estimation can be summarized below.
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QFT
000000

procedure

Quantum phase estimation can be summarized below.

phase estimation order finding and factoring

O00000e 00000000

general applications
[e]e)

Inputs: (1) A black box wich performs a controlled-U”7 operation, for integer j,
(2) an eigenstate |u) of U with eigenvalue e, and (3) £ = n + [log (2 + +)]
qubits initialized to |0).

Outputs: An n-bit approximation @, to ¢@,.

Runtime: O(t?) operations and one call to controlled-U” black box. Succeeds
with probability at least 1 —e.

Procedure:
Lo |0)u)
2. = =D i
VE
1 21
3. — —= > U
VE 5
1 21
== 3 )
o
4. = [@u)u)
5. — Du

initial state

create superposition

apply black box

result of black box

apply inverse Fourier transform

measure first register
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The fast quantum algorithms for these two problems are
interesting for three reasons.

e providing evidence for the idea that “quantum computers
may be inherently more powerful than classical ones”

@ intrinsic worth to justify interest in any novel algorithm

e practical standpoint: to break the RSA public-key
cryptosystem.

@y t#eaia
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The fast quantum algorithms for these two problems are
interesting for three reasons.

e providing evidence for the idea that “quantum computers
may be inherently more powerful than classical ones”

@ intrinsic worth to justify interest in any novel algorithm

e practical standpoint: to break the RSA public-key
cryptosystem.

These two problems are in fact equivalent to one another.

@ explaining a quantum algorithm for solving the
order-finding problem;

@ explaining how the order-finding problem implies the
ability to factor.
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order finding

o Def: For positive integers z and N, and z < N with no
common factors. The order of r modulo N is defined to
be the least positive integer, r, such that 2" = 1(modAN).
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order finding

o Def: For positive integers z and N, and z < N with no
common factors. The order of r modulo N is defined to
be the least positive integer, r, such that 2" = 1(modAN).

o Goal: to determine the order for some specified z and N.
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order finding

o Def: For positive integers z and N, and z < N with no
common factors. The order of r modulo N is defined to
be the least positive integer, r, such that 2" = 1(modAN).

o Goal: to determine the order for some specified z and N.

o Hardness: No classical algorithm is known to solve it
using polynomial in the O(L) bits, where L = [log(N)].
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order finding

o Def: For positive integers z and N, and z < N with no
common factors. The order of r modulo N is defined to
be the least positive integer, r, such that 2" = 1(modAN).

o Goal: to determine the order for some specified z and N.

o Hardness: No classical algorithm is known to solve it
using polynomial in the O(L) bits, where L = [log(N)].

@ The quantum algorithm for order-finding is just the phase
estimation applied to the unitary operator

Uly) = zymodN),
with y € {0,1}* and 0 < y < N— 1 for the action of mod N.
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reduction to phase estimation

e Define states |us),0 < s < r—1 as follows, i.e.,

r—1

1 —2misk
|us) = NG z:;) exp [T} |2¥modN).

o Then they are eigenstates of U, since

r—1

Ulus) = %kgo exp[iTiSk] |2*  mod Ny = eacp[

general applications
[e]e)
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procedure

Inputs: (1) A black box U, n which performs the transformation

|7)|k) = |7)|#k mod N}, for & co-prime to the L-bit number N, (2)
t=2L+1+ [log (2+ 3-)] qubits initialized to |0), and (3) L qubits initialized
to the state |1).

Outputs: The least integer © > () such that 2" =1 (mod N).

Runtime: O(L?) operations. Succeeds with probability O(1).

Procedure:
1. | )\1) initial state
2'—1
2. Z ‘.7 ‘1 create superposition
\/__
2' 1
3. - — Z 7)]27 mod N} apply Uz, v
Vi
r=12t—1
Z Z qu',/-r‘
e 7)|ws)
V2t =
o ly inverse Fourier transform to first
4. - Z |s/7)|us) apply
ﬁ s register
5. — S/TT‘ measure first register
5 =y £
apply continued fractions @ fﬂi’“‘ﬁ ‘.\ﬂf‘
6. —r

algorithm



e Given a positive composite integer N, what prime numbers
when multiplied together equal it?
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e Given a positive composite integer N, what prime numbers
when multiplied together equal it?

e reduction of factoring to order-finding
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e Given a positive composite integer N, what prime numbers
when multiplied together equal it?

e reduction of factoring to order-finding

e simple example of factoring 15
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reduction

Inputs: A composite number N
Outputs: A non-trivial factor of N.

Runtime: O((log N)*) operations. Succeeds with probability O(1).

Procedure:
1. If N is even, return the factor 2.
2 Determine whether N = a® for integers @ > 1 and b > 2, and if so

return the factor a (uses the classical algorithm of Exercise 5.17).

3. Randomly choose z in the range 1 to N — 1. If ged(z, N) > 1 then return
the factor ged(zx, N).

4. Use the order-finding subroutine to find the order r of z modulo N.

5. If r is even and #"/? # — 1(mod N) then compute ged(z"/? — 1, N) and
ged(z"/2 + 1, N), and test to see if one of these is a non-trivial factor,
returning that factor if so. Otherwise, the algorithm fails.
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1. Choose a random number z = 7.
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1. Choose a random number z = 7.
2. Compute the order r satisfying 2" =1 mod N
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1. Choose a random number z = 7.

2. Compute the order r satisfying 2" =1 mod N
2.1 begin with the state |0;)|04)

lcp t#HEAL S
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Eg. factoring 15

1. Choose a random number z = 7.
2. Compute the order r satisfying 2" =1 mod N

2.1 begin with the state |0.)|04)
2.2 apply H gates to the first register containing ¢ = 11 qubits
(ensuring e<1/4)
261

Z\ 0= [0+ )+ 2o 2= 1] 1

@y t#eaia



QFT phase estimation order finding and factoring general applications
000000 0000000 00000080 (e]e]

Eg. factoring 15

1. Choose a random number z = 7.
2. Compute the order r satisfying 2" =1 mod N

2.1 begin with the state |0.)|04)
2.2 apply H gates to the first register containing ¢ = 11 qubits
(ensuring e<1/4)
261

Z\ )0 = f[|0+|1>+|2> 2 -1)] 1)

2.3 compute f( k) = 2*'mod N

Z\k)p: mod N
=T[‘°)‘ H1)]7) +[2)[4) + [3113) + [ +[5)[7) + [6}14) + - |
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Eg. factoring 15

1. Choose a random number z = 7.
2. Compute the order r satisfying 2" =1 mod N
2.1 begin with the state |0.)|04)
2.2 apply H gates to the first register containing ¢ = 11 qubits
(ensuring e<1/4)
21

Z\ 0 = \/_[|0+|1>+|2> 2 -1)] 1)

2.3 compute f( k) = 2*'mod N
21
Z k)|z* mod N)
- \% (0011 + 11)17) + 2)14) + 3)13) + [411) + 15)07) + 6)14)+ -
2.4 apply the inverse QFT to the first register and measure it
measure the second register, obtaining a random result from

1,7, 4 or 13. dcptaeaia






2.5 suppose the result is 4 (r2), that means the state (rl) input
to FTt would have been \/g[|2> +16) + [10) + |14) + - - ]
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2.5 suppose the result is 4 (r2), that means the state (rl) input

to FT' would have been \/§[|2> +16) + [10) + |14) + - - }

2.6 after applying FTT, we obtain some state >, aq|l), with the
probability distribution below

L —
0.25F g

0.2

T

=
=
]
— o1

0.05

T
200 400 600 800 1000 1200 1400 1600 1800 2000

/ the
final measurement gives either 0, 512, 1024, or 1536, and

each with probability almost exactly 1/4.
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2.5 suppose the result is 4 (r2), that means the state (rl) input

to FT" would have been \/g[|2> +16) + [10) + |14) + - -

2.6 after applying FTT, we obtain some state >, aq|l), with the
probability distribution below

0.25F

o
g

200 400 600 800 1000 1200

14
final measurement gives either 0, 512, 1024, or 1536, and
each with probability almost exactly 1/4.
3. suppose we obtain [ = 1536, computing the continued

fraction expansion gives 1536/2048 = 1/(1 + (1/3)), so that
3/4 occurs as a convergent in the expansion.

T
1400 1600 1800 2000

the
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2.5 suppose the result is 4 (r2), that means the state (rl) input

to FT" would have been \/g[|2> +16) + [10) + |14) + - -

2.6 after applying FTT, we obtain some state >, aq|l), with the
probability distribution below

- L —
0.25F

—_—
0.2

=
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]

— o1
0.05

T
200 400 600 800 1000 1200 1400 1600 1800

14
final measurement gives either 0, 512, 1024, or 1536, and
each with probability almost exactly 1/4.
3. suppose we obtain [ = 1536, computing the continued
fraction expansion gives 1536/2048 = 1/(1 + (1/3)), so that
3/4 occurs as a convergent in the expansion.
4. ris even, and /2 mod N=4# —1 mod 15, so
ged(2? — 1,15) = 3 and ged(2? + 1,15) = 5 are both
non-trivial factors. @*ﬂﬁ‘*ﬁﬁ‘

2000

the
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general applications of the QFT

e period finding
o discrete logarithms

o hidden subgroup problem

The readers interested in understanding all the details will have
to work much harder, because the presentation in this section is
rather more schematic and conceptual than earlier sections.
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Summary

Q QFT
o quantum Fourier transform
@ product representation
o efficient circuit
@ complexity

© phase estimation
@ phase estimation
three stages
intuition
performance and requirements
procedure

© order finding and factoring
o order finding
e factoring

@ general applications @ wal a8
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